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Spectral analysis of deformed random networks
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We study spectral behavior of sparsely connected random networks under the random matrix framework.
Subnetworks without any connection among them form a network having perfect community structure. As
connections among the subnetworks are introduced, the spacing distribution shows a transition from the
Poisson statistics to the Gaussian orthogonal ensemble statistics of random matrix theory. The eigenvalue
density distribution shows a transition to the Wigner’s semicircular behavior for a completely deformed
network. The range for which spectral rigidity, measured by the Dyson-Mehta A; statistics, follows the Gauss-
ian orthogonal ensemble statistics depends upon the deformation of the network from the perfect community
structure. The spacing distribution is particularly useful to track very slight deformations of the network from
a perfect community structure, whereas the density distribution and the Aj statistics remain identical to the
undeformed network. On the other hand the Aj statistics is useful for the larger deformation strengths. Finally,
we analyze the spectrum of a protein-protein interaction network for Helicobacter, and compare the spectral

behavior with those of the model networks.
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I. INTRODUCTION

The network concept has been gaining recognition as a
fundamental tool in understanding the dynamical behavior
and the response of real systems from different fields such as
biology, social systems, and technological systems. Ex-
amples of biological systems include food web, nervous sys-
tem, cellular metabolism, protein-protein interaction net-
work, and gene regulatory networks; social systems include
scientific collaboration, citation, and linguistic networks, and
technological systems include internet and power grid [1].
Many of these networks have been shown to have universal
structural properties, such as degree distribution following a
power law, small diameter, large clustering coefficient, and
existence of communities [1-4].

Different network models have been proposed and inves-
tigated in detail to understand systems having an underlying
network structure [1-3,5]. These models concentrate to cap-
ture one or more structural properties of the networks men-
tioned above [1-3]. Apart from these direct measurements of
structural properties, network spectra are also useful to un-
derstand various properties of the underlying system. Eigen-
values of the adjacency matrix of networks form what are
called network spectra, and provide information about some
basic topological properties of the underlying network [6,7].
Recently, considerable research has been done in the direc-
tion of network spectra [8,9].

In the following, we mention known results on the spectra
of real world and model networks. The spectra of networks
have some correspondence with the spectra of random ma-
trices. For instance, the distribution of eigenvalues of a ma-
trix having finite mean number p of nonzero Gaussian dis-
tributed random elements per row follows Wigner
semicircular law in the limit p — N, where N is the dimen-
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sion of matrix [10,11]. For very small p, which corresponds
to the sparse random matrix, one gets the semicircular law
but with peaks at different parts of the spectrum (maximum
at the eigenvalue zero) [12]. Recent investigations of the
spectral behavior of networks, leading to matrices with en-
tries zero and one, show that the random networks [13] fol-
low Wigner semicircular law as well [14] with degeneracy at
the eigenvalue zero. The small-world model networks [2]
show a very complex spectral density with many sharp peaks
[15], while the spectral density of the scale-free model net-
works [3] exhibits a triangular distribution [9,14-16]. The
spectra of real world networks show remarkably different
features than that of the model networks [9,15-17], and
based on this observation a network construction method
was proposed, which captures a peak at zero property shown
by the spectra of many real world networks such as protein-
protein interaction networks [17]. Recently, spacing distribu-
tions of Erdos-Rényi networks have been studied under ran-
dom matrix theory (RMT) framework [18]. As connection
probability decreases Ref. [18] shows a transition to the
Poisson statistics. Additionally, it shows the transition to the
Poisson statistics upon the deletion of nodes in the real world
networks [18]. References [15,19] have shown that the spac-
ing distributions of various model networks, namely, small-
world and scale-free networks, follow the universal behavior
of RMT. In contrast to [18], these works [15,19] have con-
sidered only connected networks. Furthermore, spectral ri-
gidity such as the Aj statistics, defined in Eq. (3), provides a
qualitative measure of the level of randomness in networks
[20]. Recently localization of eigenvectors has also been
used to analyze various structural and dynamical properties
of real and model networks [21].

RMT, initially proposed to explain statistical properties of
nuclear spectra, has also provided successful predictions for
the spectral properties of different complex systems such as
disordered systems, quantum chaotic systems, and large
complex atoms among these. It has been followed by nu-
merical and experimental verifications in the last few de-
cades [10,11]. Quantum graphs, which model the systems of
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interest in quantum chemistry, solid state physics, and trans-
mission of waves, have also been studied under the RMT
framework [22]. Recently, RMT has been shown to be useful
in understanding the statistical properties of empirical cross-
correlation matrices appearing in the study of multivariate
time series in several problems: price fluctuations in stock
market [23], electroencephalogram data [24], and variation
in different atmospheric parameters [25].

In the present work we study spectral behavior of net-
works having community structure under the framework of
RMT. The study of community structure helps to elucidate
the organization of networks, and eventually could be related
to the functionality of groups of nodes [4,5,26]. Regardless
of the type of real world networks in terms of the degree and
other structural properties [1], it is possible to distinguish
communities in the whole networks [4]. However, the ques-
tion of definition of the community is problematic, and usu-
ally community is assigned to the nodes which are connected
densely among themselves, and are only sparsely connected
with other nodes outside the community. We therefore model
here community structure by sparsely connected Erdos-
Rényi random networks. This simple approach considers
more densely connected nodes as a definition of community,
and does not pay attention to the detailed structure of the
connections [5]. Recent literature is largely filled up with
methods to detect communities in networks based on struc-
tural measures [27,28], whereas few works emphasize on the
spectral properties such as density distribution and eigenvec-
tor analysis as well [29]. The objective of our work is not the
detection of communities, rather we show the applicability of
spectral methods under the RMT framework to analyze com-
munity structures in networks. Instead of paying attention to
the nodes forming communities, we look for the signatures
of overlapping of communities in the spectra of the corre-
sponding adjacency matrix. We study various spectral behav-
iors, namely, density distribution, nearest-neighbor spacing
distribution (NNSD), and spectral rigidity for deformed ran-
dom networks. We find that the NNSD detects even the small
mixing of communities in the network, whereas spectral ri-
gidity probed by the Aj statistics is suitable to analyze larger
mixing, which is, in general, the case for real world net-
works. Communities are modeled by random or scale-free
subnetworks, and interactions between communities are con-
sidered as random. For small interaction strength the NNSD
of the network shows the transition from the Poisson to the
Gaussian orthogonal ensemble (GOE) statistics. For large in-
teractions, the A; statistics shows systematic increase in the
range for which it follows GOE statistics. Finally, as an ap-
plication, we study the spectral properties of a protein-
protein interaction network of Helicobacter under the RMT
framework.

II. DEFORMED NETWORKS

For an unweighted network, the adjacency matrix is de-
fined in the following way: A;;=1, if i and j nodes are con-
nected and zero otherwise. For undirected networks, this ma-
trix is symmetric and consequently has real eigenvalues.
Random matrices corresponding to unweighted random net-
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FIG. 1. (Color online) Connection matrices corresponding to p
=0.01 and different values of g. (a) plots the connection matrix of
the two subnetworks which do not have any connection between
them. (b) corresponds to ¢/p=0.1, and (c) depicts the case g/p
=0.5, when the connections between the subnetworks are as large as
50% of the connections inside.

works have entries 0 and 1, where number of 1’s in a row
follows a Gaussian distribution with mean p and variance
p(1—=p). This type of matrix is very well studied within the
RMT framework [10,12]. We then turn our attention to the
following structure: (1) Take m random networks with con-
nection probability p; the spectral behavior of the matrix
corresponding to each of these subnetworks (blocks) sepa-
rately follows GOE statistics. The matrix corresponding to
the full network would be a m block-diagonal matrix. (2)
Introduce random connections among these subnetworks
with probability g. This configuration leads to m block ma-
trix, with blocks having entries one with portability p, and
off-diagonal blocks having entries one with probability g.
The above networks can be cast in the following form:

A=Ag+A,. (1)

Ay is a m blocks diagonal random matrix, where each block
represents one community, and the off-diagonal block matrix
A, denotes the interactions among the communities. Each
block in A, is a random matrix, which for large N has mean
¢ and deviation ¢g(1—g¢). Since the nonzero values of ¢ intro-
duce deformation to the complete block-diagonal form, we
refer A being a deformed network. This terminology is mo-
tivated by the literature on deformed random matrices [30].
Figure 1 shows the connection matrices for m=2 and various
values of ¢. Figure 1(a) represents the two random subnet-
works, each of size N=500, with the connection probability
inside a subnetwork being p=0.01 and between the subnet-
works being ¢=0. The ratio ¢/p, which can be considered as
the relative strength of A, and A, measures the deformation
from the block-diagonal form of the matrix, or from the per-
fect structured network. The value g/p=1, which corre-
sponds to equal strength of intercommunity and intracommu-
nity connections, yields complete random network. Figure
1(b) plots the connection matrix for ¢/p=0.1, which implies
that intercommunity connections are 10% of the intracom-
munity connections. Figure 1(c) shows the connection matrix
for ¢=0.005; for this value of ¢, the intercommunity strength
is 50% (g/p=0.5) of the intracommunity strength. Note that
in numerical simulations we use the value of p equal to 0.01,
which leads to a sparse connected random network (N,
~ N) with the average degree (k) ~NXp=5, N, being the
number of connections in the network. Larger value of p
would lead to networks with the larger average degree. Real
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FIG. 2. (Color online) Density distribution of the two random
subnetworks connecting each other with probability (a) g=0 and
q/p=0; (b) g=0.001 and hence ¢g/p=0.1; (c) g=0.005, hence ¢g/p
=0.5 and (d) g/p=1 which corresponds to g=0.01. Each block
(random network) has size N=500. The axes are scaled in such a
way that the semicircle corresponding to ¢g=p has unit radius (see
text). All graphs are plotted for 20 realizations of random sets of
connections among the two subnetworks.

world networks are sparse [1], and hence we chose such a
small value of p.

III. NUMERICAL SIMULATION RESULTS

We denote the eigenvalues of the network by A\;,i
=1,...,m XN, where N is the size of the subnetwork, and m
is the number of the subnetworks. Note that the size of each
subnetwork may be different, but for simplicity we consider
here equal size. Figure 2 plots the spectral density for m=2
block matrices having gN? nonzero off-diagonal entries, cor-
responding to the two subnetworks connected with probabil-
ity g. As discussed earlier g varies from g=0, which corre-
sponds to the two completely disconnected subnetworks [A
=A,, Fig. 1(a)], to g=p leading to a single random network.
The cases for 0<<g<<p correspond to the configurations
when the initial community structure is almost preserved.
Increase in the value of g leads more entries of one in the
matrix A, [Eq. (1)]. Finally the g=p case destroys the com-
munity structure completely, and the network can be treated
as one single random network. Figure 2 presents the density
distribution of eigenvalues for various values of g. The ei-
genvalues are scaled with respect to the spectra of the net-
work for g/p=1. With this scaling, the density distributions
are not semicircular for values of ¢<<p. As the coupling
between the two blocks increases (¢ >0), the density distri-
bution shows a transition to the semicircular form at g=p,

p(\) = %\/(xé -\%),
TNy

where A is the radius of the semicircular distribution for g
=p calculated from the spectra of network as No=(\pax
~Nmin)/ 2, Nmax and A, being the highest and the lowest
eigenvalues. Now we turn our attention to the statistics of
eigenvalue fluctuations.
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FIG. 3. (Color online) Nearest neighbor spacing distribution for
the two such values of ¢ which gives two extreme statistics. Histo-
grams correspond to the numerical values g=107(¢/p=0.001) and
g=10"%g/p=0.01). The solid and dotted curves are, respectively,
Poisson and GOE predictions of RMT. The figure is plotted for an
average over 20 realizations of the random set of connections be-
tween the networks.

A. Nearest-neighbor spacing distribution

In the following, we study spectral fluctuations of the net-
works for different values of ¢g. In order to get universal
properties of the eigenvalue fluctuations, one has to remove
the spurious effects due to variations in the spectral density
and to work at the constant spectral density on the average.
Thereby, it is customary in RMT to unfold the eigenvalues

by a transformation \,=N(\,), where N()x)=f§minp()\’)d)\’ is
the averaged integrated eigenvalue density [10]. Unfolding is
a transformation which produces the eigenvalues with a con-
stant average level density. Since we do not have an analyti-

cal form for N, we numerically unfold the spectrum by poly-
nomial curve fitting.

Using the unfolded eigenvalues, we calculate the NNSD
P(s), where s”=N\;,;—\,, for different ¢ values. Figure 3
plots the spacing distribution for the two values of ¢, g=0
and ¢=107*. For such small values of g, although the density
distributions remain unchanged, the NNSD shows significant
changes. Spacing distributions calculated from the network
spectra are fitted using Brody formula [31],

Pg(s) = AsP exp(— as?), (2)

where A and « are determined by the parameter S as follows:

B+1
A=(1+pB)a and a=[l’<%)} :

Equation (2) is a semiempirical formula characterized by the
single parameter 8. As B goes from zero to one, the Brody
formula smoothly changes from Poisson to GOE. As can be
seen from Fig. 3, for ¢/p~0.001(g~ 1075), the value of the
Brody parameter S~ 0.2, which suggests that distribution is
very close to the Poisson [P(s)=exp(—s)] denoted by the
dotted curve in the figure. As the value of g increases, 3 also
increases, and it is of the order of 1 for the value of ¢/p
~0.01 (which corresponds to the value of g as less as 107%),
and becomes insensitive for a further increase in g. For larger
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FIG. 4. (Color online) Long-range correlations among eigenval-
ues. Different open symbols are the numerical values of A; for
various ¢ values, and the solid curve (merged with the open circles
corresponding to g/p=1) is the GOE prediction [Eq. (3)]. Since for
g=p the Aj statistics of network follows the GOE prediction com-
pletely, the solid line showing GOE statistics merges with the
circles showing numerical values for this g. The figure is plotted for
an average over 20 realizations of the networks. A; follows the
universal RMT prediction up to certain L values. The range of L for
which A; follows GOE statistics increases with the ratio g/p.

values of ¢, we analyze the spectra using the spectral rigidity
test of RMT.

B. Spectral rigidity via Aj statistics

The spectral rigidity, measured by Aj; statistics of RMT,
gives information about the long-range correlations among
the eigenvalues. The A5 statistics measures the least-square
deviation of the spectral staircase function representing the

cumulative density N(\) from the best straight line fitting for
a finite interval L of the spectrum, i.e.,

x+L
As(L;x) = imin f [N(\) — ¢\ — ¢y )%dN, (3)

C1,C

where c¢; and ¢, are obtained from a least-square fit. Average
over several choices of x gives the spectral rigidity As(L).
For the uncorrelated eigenvalues, As;(L)=L/15, reflecting
strong fluctuations around the spectral density p(\). For the
GOE case, A;(L) statistics is given by

1

As(L) ~ ;ln L. (4)
Figure 4 plots the A5 statistics for five different values of ¢.
Various open symbols are the numerical values of A; for
various ¢ values, and the solid line (merged with the ¢/p
=1 case) is the A;(L) statistics for the GOE case [Eq. (4)]. As
seen from Fig. 4, the A;(L) statistics follows RMT predic-
tions of GOE [Eq. (4)] up to a certain L. It has a linear
behavior in semilogarithmic scale with the slope of ~1/ 7.
The value of L for which it follows GOE statistics depends
upon ¢. For small values of ¢ such as ¢/p=0.01 and ¢/p
=0.05, A; follows RMT prediction until very small range of
L~5 and L~ 20, respectively. As g increases, the value of L
for which A5 follows the GOE statistics also increases. For
q/p=0.1, it agrees with the RMT predictions of GOE behav-
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ior for L~75, and after this value, deviation from the RMT
prediction is seen. This deviation corresponds to the exis-
tence of community structure in the network. As the value of
q increases, the communities have more and more random
connections between them. For g=p the community structure
is destroyed fully, and the network is a complete random
network. This fact is reflected in the Aj statistics correspond-
ing to g/p=1. At this value of ¢, it follows RMT prediction
up to a very long range L~ 150. After this value of L, for the
network of size NXm=1000 we do not have a meaningful
calculation of the Aj statistics [32]. For ¢=0.005 (gq/p
=0.5) (see Fig. 1), where the strength of intercommunity is
as large as ~50% of the intracommunity connections
strength, the A; statistics correctly reflects the deviation from
complete random matrices, suggesting the existence of com-
munities in the network.

Note that we present results for each subnetwork having
equal size. For subnetworks having different sizes, all the
figures remain the same. The crucial quantity, which affects
correlations of eigenvalues, is the variance of each block or
the ratio g/p. For blocks with different sizes, but with the
same q/p, similar results are obtained, except for the exact
value of L in Fig. 4 for which the Aj; statistics follows GOE
distribution, which scales with the network size [20].

IV. DEFORMED SCALE-FREE NETWORKS

In the following we consider scale-free networks as the
subnetworks, and study the spectral behavior for various val-
ues of g. Again g measures the strength of the off-diagonal
block matrix defining the interaction between the subnet-
works. Matrix A, in Eq. (1), corresponding to the scale-free
subnetworks, consists of two block-diagonal matrices, with
entries of one in each block following a power law charac-
teristic of the subnetwork. We use Barabdsi-Albert algorithm
[3] to generate the scale-free subnetworks. In scale-free net-
work the probability P(k) that a node has degree k decays as
a power law P(k) ~ k™7, where v is a constant and for the
type of probability law used in the simulations y=3. Other
forms for the probability law are also possible, which gives
different exponent [33]. However, the results reported here
are independent of the value of vy [34]. Size and average
degree of the subnetworks remain the same as for the random
subnetworks, i.e., N=500 and (k)=5. The average degree
((k)) of a network can be calculated as (k)=2 X N,/N, where
N, is the number of connections and N is the size of the
network. With the increase in the value of ¢, deformation
from the network having scale-free community structure also
increases. Figure 5 plots various spectral behaviors of de-
formed networks made of the scale-free subnetworks. Figure
5(a) plots the density distribution for the various values of g.
For small values of ¢, the density is very different from that
of the deformed random networks (Fig. 2). It has a triangular
shape with a peak at zero. This is a well-known shape for
sparse scale-free networks [9,15,16]. For ¢/p<0.01, when
the scale-free structure of the subnetworks dominates over
the random interaction between them, the eigenvalue density
distribution does not show any noticeable change. But the
NNSD in Fig. 5(b) suggests a possible structure in the net-
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FIG. 5. (Color online) Spectral behavior of deformed scale-free
networks. Subnetworks are scale-free networks of size N=500 and
average degree (k)=5. (a) plots the eigenvalue density distribution
of deformed scale-free network for various values of ¢/p. (b) and
(c) plot the NNSD and Aj; statistics respectively. Dashed and solid
line in (b) corresponds to Poisson and GOE statistics respectively.
All graphs are plotted for 20 sets of random realization of interac-
tion networks. (d) plots the density distribution (inset), and spacing
distribution for a protein-protein interaction network in Helico-
bacter as histogram and GOE statistics as solid line. This network
has size N=712 and average degree (k)~5. Open circles in (c) is
the A5 statistics for Helicobacter.

work. As shown in Fig. 5(b), for ¢/p=0.001 (g=1075) the
NNSD is close to Poisson statistics with a value of the Brody
parameter S~ 0.21. As ¢q increases, value of the Brody pa-
rameter increases as well, becoming one for g~ 107*. After
this value of g, the NNSD does not provide any further in-
sight, and we probe for long-range correlations among eigen-
values. Figure 5(c) plots the Aj statistics for various values
of g. It shows similar behavior as for the deformed random
networks (see Fig. 4). For ¢~0.01, when the network has
distinguishable community structure, the value of L for
which A; follows the GOE statistics (4) is as small as 25. As
q is increased, L also increases, becoming ~150 for ¢/p
~1.

Figure 5(d) shows the density distribution (inset) and the
spacing distribution of the protein-protein interaction net-
work of Helicobacter [35]. The largest connected component
of the network has dimension N=708 and number of connec-
tions N.=2789. The average degree of this scale-free net-
work is (k) ~4. The density distribution has triangular form
with a peak at zero. This behavior of the density distribution
suggests scale-free properties of the network [9,15,16], but
does not provide information of randomness or structure in
the network. To get further insight, we calculate the NNSD
and the spectral rigidity of the network. For this, first we
unfold the eigenvalues using the procedure explained earlier.
The NNSD of the network follows GOE statistics with the
value of B~ 0.98, suggesting enough random connections in
the network. Further test of long-range correlations among
eigenvalues shows that the A; statistics follows the GOE
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prediction [Eq. (4)] up to L~ 20 in Fig. 5(c), and after this
value deviation from the universal behavior is seen. It sug-
gests that, though the network has enough random connec-
tions which give rise to short-range correlations among ei-
genvalues, it has strong community structure causing
deviation of the Aj statistics from the random matrix behav-
ior after a certain range.

In the present paper we consider only the random interac-
tions between communities. For other kind of interactions,
for instance interactions among the scale-free subnetworks as
considered in [5], which lead to a hierarchical scale-free net-
work, the density distribution would show an entirely differ-
ent behavior from the semicircular distribution. p=¢ case
would lead to a scale-free topology which has a triangular
density distribution with peak at zero. However, spectral
fluctuations would show qualitative similar behavior. For
small coupling interactions among the subnetworks, the
NNSD results would be same as presented here, showing a
transition from Poisson to GOE statistics [20], whereas for
large coupling interactions the exact range for which the A,
statistics follows GOE would be different from those of the
random interactions. Further detailed results of this model as
well as real world networks having more complicated struc-
tures analyzed under the deformed random matrix frame-
work would be discussed elsewhere [36].

V. CONCLUSIONS AND DISCUSSIONS

The eigenvalue density distribution of networks having
two subnetworks tends toward the semicircular distribution
as the random connections between the subnetworks are in-
creased. For very small values of ¢<<107%, corresponding to
the very small deformation from the community structure,
the density distribution does not present any noticeable
changes, but the NNSD, which reflects short-range correla-
tions among eigenvalues, show important features. For two
random subnetworks, which are almost uncoupled (i.e., g
~0), the NNSD is very close to the Poisson statistics, and as
q increases, it has a smooth transition to the GOE statistics.
Note that this Poisson to GOE transition is found for many
different systems, for example spectra of insulator-metal
transition, order-chaos transition follow this Poisson-GOE
transition [11]. Sade et al. [37] studied transition to the GOE
statistics as a function of site disorder for the spectra of
small-world and scale-free networks. Here, by keeping the
network structure fixed, disorder at nodes is increased and
depending upon the network average degree transition to
GOE statistics is seen. The main difference between [37] and
the study presented in this paper is the following: we track
changes in the spectra with structural changes in the network
architecture. As random connections among the subnetworks
are increased, first there is transition for the NNSD to the
GOE statistics, and this transition occurs for very small value
of random connections among networks. This is the crucial
and remarkably different result observed here, which sug-
gests that very small random interaction between communi-
ties is enough to introduce short-range correlations among
them, spreading the randomness in the whole network. Sec-
ond, further increase in coupling among the subnetworks is
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reflected by long-range correlations among eigenvalues. For
this increase in the value of g, the NNSD does not give
additional insight to the deformation of the network, as it
remains same with the 8~ 1, so we turned our attention to
the A; statistics.

The Aj statistics, which measures long-range correlations
among the eigenvalues, detects deformation from a network
having two coupled subnetworks, to a single random net-
work. More deformation of the network from community
structure leads to a larger range of L for which A, follows the
GOE statistics. Note that, for the case of subnetworks being
completely random, the spacing and the A; statistics of each
of them follows RMT prediction. Therefore, any deviation
from GOE statistics is due to the community structure these
two subnetworks form when considered as a single network.

It is interesting to note that our results resemble the be-
havior of deformed random matrix ensembles introduced to
study the effect of isospin symmetry breaking in nuclei [30].
The qualitative behavior of the spectral density and the A
statistics of networks presented here is similar to that of de-
formed matrices studied in [38—40]. The analytical form of
the density derived in [39] depends on a parameter o mea-
suring the relative strength of the off-diagonal random ma-
trices to the block-diagonal random matrices. In similar
lines, for deformed networks, we can compare ¢g/p, relative
strength of off-diagonal and diagonal networks, with a. The
results presented here suggest that further investigations of
complex networks following similar lines as in deformed
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random matrices [39] would be useful to have detailed infor-
mation of communities in the networks [41].

To conclude, we have studied the spectral behavior of
networks having community structure, and shown that the
NNSD and Aj statistics capture features related to the struc-
ture in the network. We investigate the spectral properties of
a real world network as well, and compare the results with
those of the model networks. On the one hand, results pre-
sented in this paper advance the studies of the spectral prop-
erties of network with the community structure under the
universal RMT framework; on the other hand, variations in
the correlations among eigenvalues shed light on the cou-
pling among communities. For the simulations, the commu-
nity structure in network is modeled by the very simple ran-
dom or scale-free subnetworks, and the interactions among
these subnetworks are considered random, whereas real
world networks have richer structure [5]. However, the re-
sults presented here provide a platform to investigate the
community structure of networks using a well-developed
theory of random matrices; the further investigations in this
direction would deal with real world networks with richer
and more complicated structure under the deformed random
matrix framework [36,41].
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